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ABSTRACT
In the present work we have established some applications of the integration by parts formula which enables to
lay the foundations of the study of regularity properties of the distributions of the solution process of stochastic
delay equation.
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I. INTRODUCTION, NOTATION AND DEFINITIONS

1.1 Introduction

In Chapter 1 of the Ph.D. thesis of Ahmed [15] we have proved the existence and uniqueness of a solution for
certain types of delay (functional) stochastic differential equations (delay SDE’s) with discontinuous initial
data,see also [1], [9] and the web cite www.sfde.math.siu.edu. See the delay SDE (1.1) in the present work. In
[18] we have established integration by parts formula involving Mallivan derivatives of solutions to such type of
delay (functional) SDE’s. The integration by parts formula which we establish can be used to extend the
formulas in [2] and [3] and to include delay SDE’s as well as ordinary SDE’s. In this work we also establish
some other useful applications to delay SDE’s. Generally speaking we can say that our work extends the first
three chapters of the work by Norris to include delay SDE’s as well as ordinary SDE’s; see Theorems 2.3, 3.1
and 3.2 in [10] . In a sequal paper we will show that that the distribution of the solution process has smooth
densities. Moreover we will establish integration by part formula involving Malliavin derivatives of higher order.

1.2 Notations and Definitions

The following notations and definitions will be used throughout this work: is a probability space; is

a positive real number; is an increasing family of sub- algebras of , each of which contains all null

subsets of ; is the set of natural numbers; is a -dimensional

normalized Brownian motion. If is a topological space, then denotes its Borel field. The symbol refers

to the Lebesgue measure on , and denotes the Euclidean norm on , .

Let be a Banach space and let be a sub- algebra of containing all subsets of measure zero in , then

denotes the space of all functions which are - measurable and are such that

.

The symbol denotes the Banach space (with norm determined by ) of all

equivalence classes of functions which are - measurable and which are such that
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. The symbol ( , ) denotes the space of all linear maps from to . The

symbol refers to the interval , and or refers to the Borel field on .

If is a process, then for each and we define the map:

by for all and almost all . For each we write

. Let the function belong to , belong to

, and for let , be functions from

to . Then a process is called a solution of the delay SDE
with integral form

(1.1)

If

(i) is - measurable;

(ii) For each , the process is - measurable, and for each , the process
is - measurable;

(iii) ,

(IV) satisfies the delay SDE ([1.1.1]).

The following conditions are sufficient for the existence of a unique solution to (1.1) (see [1] and [15]).

(i) .

(ii) .

(iii) , are such that

(a) and are - measurable.

(b) For each , the stochastic variables and are
- measurable.

(c)There exists a constant and a function such that
(1.2) (1.2)

for almost all and for all ; and belongs to .

(d) There exists a constant such that, for almost all ,

(1.3)

for all ; for all , , and for all , .
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II. INTEGRATION BY PARTS FORMULA

In the beginning of this section we recall the following eight basic numbered equations and definitions, See(16)

and(17) . For , let , be the Malliavin derivative of the

solution process . We write ( , ) for its time delay.

In the following definition we give a precise definition of the Malliavin derivative of a real-valued functional
of Brownian motion.

I.Definition: Let be a functional of -dimensional Brownian motion, and let

be a deterministic vector-valued function in . Then

is given by the limit:

(2.1)

The mapping is a linear map (functional) from the space to .

Here denotes the space of all -matrices ( rows, columns).

Notice that, for be a deterministic matrix-valued function in

, can be considered as a -matrix where each entry is an -valued adapted

stochastic process; can be considered as a -matrix where each entry is an -valued adapted

stochastic process. If is a real matrix, then denotes its

transposed: it is matrix with entries .

The process satisfies the following delay stochastic differential equation:

(2.2)
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where belongs to . If belongs to we replace with in(2.2). If we obtain the delay

stochastic differential equation for the process :

(2.3)

We also write , and . In addition, we write

(the delay of ), and , the delay of the process . The matrix can

be identified with an operator from to itself, the matrix can be considered as an linear mapping from

to , the matrix as a mapping from to , and, finally, as a mapping from

to itself. Notice that can be considered as -matrix where each entry is an -valued

adapted stochastic process; can be considered as -matrix where each entry is an -valued

adapted stochastic process. To be precise, write the solution process as a -vector

, and consider the mapping ( , )

(2.4)

which is a mapping from to , and where each variable , , , is a fixed function in . The

derivative of the function in (2.4) can be considered as a continuous linear functional on . Therefore it

can be represented as an inner-product with a function in , which is denoted by . Consequently,

we write

(2.5)

After giving a brief introduction to our work, we are now ready to continue the work that we have started in
(16).

Here, and in the sequel, we write and instead of and
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respectively. For a concise formulation of the stochastic differential equation for the matrix-valued process

and its inverse we introduce the following stochastic differentials:

Application of the Integration by Parts Formula:

Relevant SDE’s are ( is a matrix-valued adapted process: columns, rows)

We have to arrange things in such a way that each is an -matrix, i.e. a column of height . The

matrix is a -matrix, i.e. a column vector of length , which is predictable. For , ,

and , the process can be identified with the process , i.e. the space flow of

the solution process . Below we write instead of .

A candidate choice for the vector is the process , where

If, in addition, , then it follows that ; see the proof of the following Theorem 2.
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2 Theorem.Suppose that the stochastic vectors , are chosen in such a way that the Malliavin

derivatives , are invertible. Also suppose that . Then

In particular, if , then

If, moreover, , then

Proof.The first of these equalities follows from a straight forward application of Itô’s lemma. More precisely we
have:

http://www.ijerms.com/
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This proves (2.14). The second equality is based on Itô’s formula in conjunction with Gronwall’s lemma:

. (2.19)

Put . From (2.19) we infer:

Since , from (2.20) the second claim in Theorem 2 follows.
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From (2.14) and (2.15) we easily infer:

Consider the following system of delay stochastic differential equations:

If we set , then , the Malliavin derivative taken in the direction of ,

of the solution process. In principle we could in an inductive manner find a sequence , , 1, 2,

r, where the pairs and satisfy the first equation in (2.22), and where the pair

satisfies the second equation of (2.22). The limit would yield a solution to the following system
of equations:

In Theorem 3 below we show the existence of the pair as a limit of the sequence .

Put , where indicates the transposed of the matrix . Then , and

belongs to for all if and only if this is true for the inverse of the Malliavin covariance

matrix . This kind of difficulty does not pose itself if there is no delay.

If there is no delay, then in (2.23) for we may take the inverse of the “standard flow":

.

3 Theorem. The system of delay stochastic differential equation (2.23)possesses a unique solution.

Proof.We will employ an iterative method to construct a convergent sequence of space flows . Once

is constructed, then, as remarked above, , the Malliavin derivative of the solution process
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in the direction of . In order to solve the second equation in (2.23) for the

process we define the process by the following identity (cf(2.22))

Put . The second equation in (2.22) can then be rewritten as:

or, what amounts to the same ( ),

An iteration of the equality in (2.26) yields:

The almost sure convergence of the series in (2.27) is guaranteed by the fact the process , is
continuous. Since

from(2.27) we infer
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[Ahmed, 3(7), July, 2016] ISSN: 2394-7659
IMPACT FACTOR- 2.187

International JournalofEngineeringResearches andManagementStudies

©InternationalJournal of Engineering Researches and Management Studies http://www.ijerms.com
[33]

The equality in (2.28) follows from (2.27), which yields the boundedness and continuity of the process ,

together with the fact that, by induction with respect to ,

Finally we let tend to to obtain (2.23), with

Remarks:

1. All the results which we have established in this work can be extended by replacing the Brownian motion
by another process , ( ) which is a continuous martingale adapted to

and has independent increments and satisfies with some constant the inequalities
and

for . Observe that the above properties of which we have
just mentioned are the only properties of which we have used (in case of Brownian motion) to prove
the results which we have obtained in this work. See , , and .

2. All the lemmas and theorems in this work hold for any delay interval inplace of
. See , , and .
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